Porphyromonas gingivalis-induced production of reactive oxygen species, tumor necrosis factor-α, interleukin-6, CXCL8 and CCL2 by neutrophils from localized aggressive periodontitis and healthy donors: modulating actions of red blood cells and resolvin E1

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Porphyromonas gingivalis-induced production of reactive oxygen species, tumor necrosis factor-α, interleukin-6, CXCL8 and CCL2 by neutrophils from localized aggressive periodontitis and healthy donors : modulating actions of red blood cells and resolvin E1. / Damgaard, C; Kantarci, A; Holmstrup, P; Hasturk, H; Nielsen, Claus Henrik; Van Dyke, T E.

I: Journal of Periodontal Research, Bind 52, Nr. 2, 2017, s. 246-254.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Damgaard, C, Kantarci, A, Holmstrup, P, Hasturk, H, Nielsen, CH & Van Dyke, TE 2017, 'Porphyromonas gingivalis-induced production of reactive oxygen species, tumor necrosis factor-α, interleukin-6, CXCL8 and CCL2 by neutrophils from localized aggressive periodontitis and healthy donors: modulating actions of red blood cells and resolvin E1', Journal of Periodontal Research, bind 52, nr. 2, s. 246-254. https://doi.org/10.1111/jre.12388

APA

Damgaard, C., Kantarci, A., Holmstrup, P., Hasturk, H., Nielsen, C. H., & Van Dyke, T. E. (2017). Porphyromonas gingivalis-induced production of reactive oxygen species, tumor necrosis factor-α, interleukin-6, CXCL8 and CCL2 by neutrophils from localized aggressive periodontitis and healthy donors: modulating actions of red blood cells and resolvin E1. Journal of Periodontal Research, 52(2), 246-254. https://doi.org/10.1111/jre.12388

Vancouver

Damgaard C, Kantarci A, Holmstrup P, Hasturk H, Nielsen CH, Van Dyke TE. Porphyromonas gingivalis-induced production of reactive oxygen species, tumor necrosis factor-α, interleukin-6, CXCL8 and CCL2 by neutrophils from localized aggressive periodontitis and healthy donors: modulating actions of red blood cells and resolvin E1. Journal of Periodontal Research. 2017;52(2):246-254. https://doi.org/10.1111/jre.12388

Author

Damgaard, C ; Kantarci, A ; Holmstrup, P ; Hasturk, H ; Nielsen, Claus Henrik ; Van Dyke, T E. / Porphyromonas gingivalis-induced production of reactive oxygen species, tumor necrosis factor-α, interleukin-6, CXCL8 and CCL2 by neutrophils from localized aggressive periodontitis and healthy donors : modulating actions of red blood cells and resolvin E1. I: Journal of Periodontal Research. 2017 ; Bind 52, Nr. 2. s. 246-254.

Bibtex

@article{19961357b49b4a4091a7f55921d18b14,
title = "Porphyromonas gingivalis-induced production of reactive oxygen species, tumor necrosis factor-α, interleukin-6, CXCL8 and CCL2 by neutrophils from localized aggressive periodontitis and healthy donors: modulating actions of red blood cells and resolvin E1",
abstract = "BACKGROUND AND OBJECTIVES: Porphyromonas gingivalis is regarded as a significant contributor in the pathogenesis of periodontitis and certain systemic diseases, including atherosclerosis. P. gingivalis occasionally translocates from periodontal pockets into the circulation, where it adheres to red blood cells (RBCs). This may protect the bacterium from contact with circulating phagocytes without affecting its viability.MATERIAL AND METHODS: In this in vitro study, we investigated whether human peripheral blood neutrophils from 10 subjects with localized aggressive periodontitis (LAgP) and 10 healthy controls release the proinflammatory cytokines interleukin (IL)-6, tumor necrosis factor α (TNF-α), the chemokine (C-X-C motif) ligand 8 (CXCL8; also known as IL-8) and chemokine (C-C motif) ligand 2 (CCL2; also known as monocyte chemotactic protein-1) and intracellular reactive oxygen species (ROS) in response to challenge with P. gingivalis. In addition, the impact of RBC interaction with P. gingivalis was investigated. The actions of resolvin E1 (RvE1), a known regulator of P. gingivalis induced neutrophil responses, on the cytokine and ROS responses elicited by P. gingivalis in cultures of neutrophils were investigated.RESULTS: Upon stimulation with P. gingivalis, neutrophils from subjects with LAgP and healthy controls released similar quantities of IL-6, TNF-α, CXCL8, CCL2 and intracellular ROS. The presence of RBCs amplified the release of IL-6, TNF-α and CCL2 statistically significant in both groups, but reduced the generation of ROS in the group of healthy controls, and showed a similar tendency in the group of subjects with LAgP. RvE1 had no impact on the production of intracellular ROS, TNF-α, IL-6, CXCL8 and CCL2 by neutrophils from either group, but tended to reduce the generation of ROS in subjects with LAgP in the absence of RBCs.CONCLUSIONS: Our data support that binding to RBCs protects P. gingivalis from ROS and concomitantly enhances neutrophil release of proinflammatory cytokines providing a selective advantage for P. gingivalis growth.",
author = "C Damgaard and A Kantarci and P Holmstrup and H Hasturk and Nielsen, {Claus Henrik} and {Van Dyke}, {T E}",
note = "{\textcopyright} 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.",
year = "2017",
doi = "10.1111/jre.12388",
language = "English",
volume = "52",
pages = "246--254",
journal = "Journal of Periodontal Research",
issn = "0022-3484",
publisher = "Wiley-Blackwell",
number = "2",

}

RIS

TY - JOUR

T1 - Porphyromonas gingivalis-induced production of reactive oxygen species, tumor necrosis factor-α, interleukin-6, CXCL8 and CCL2 by neutrophils from localized aggressive periodontitis and healthy donors

T2 - modulating actions of red blood cells and resolvin E1

AU - Damgaard, C

AU - Kantarci, A

AU - Holmstrup, P

AU - Hasturk, H

AU - Nielsen, Claus Henrik

AU - Van Dyke, T E

N1 - © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

PY - 2017

Y1 - 2017

N2 - BACKGROUND AND OBJECTIVES: Porphyromonas gingivalis is regarded as a significant contributor in the pathogenesis of periodontitis and certain systemic diseases, including atherosclerosis. P. gingivalis occasionally translocates from periodontal pockets into the circulation, where it adheres to red blood cells (RBCs). This may protect the bacterium from contact with circulating phagocytes without affecting its viability.MATERIAL AND METHODS: In this in vitro study, we investigated whether human peripheral blood neutrophils from 10 subjects with localized aggressive periodontitis (LAgP) and 10 healthy controls release the proinflammatory cytokines interleukin (IL)-6, tumor necrosis factor α (TNF-α), the chemokine (C-X-C motif) ligand 8 (CXCL8; also known as IL-8) and chemokine (C-C motif) ligand 2 (CCL2; also known as monocyte chemotactic protein-1) and intracellular reactive oxygen species (ROS) in response to challenge with P. gingivalis. In addition, the impact of RBC interaction with P. gingivalis was investigated. The actions of resolvin E1 (RvE1), a known regulator of P. gingivalis induced neutrophil responses, on the cytokine and ROS responses elicited by P. gingivalis in cultures of neutrophils were investigated.RESULTS: Upon stimulation with P. gingivalis, neutrophils from subjects with LAgP and healthy controls released similar quantities of IL-6, TNF-α, CXCL8, CCL2 and intracellular ROS. The presence of RBCs amplified the release of IL-6, TNF-α and CCL2 statistically significant in both groups, but reduced the generation of ROS in the group of healthy controls, and showed a similar tendency in the group of subjects with LAgP. RvE1 had no impact on the production of intracellular ROS, TNF-α, IL-6, CXCL8 and CCL2 by neutrophils from either group, but tended to reduce the generation of ROS in subjects with LAgP in the absence of RBCs.CONCLUSIONS: Our data support that binding to RBCs protects P. gingivalis from ROS and concomitantly enhances neutrophil release of proinflammatory cytokines providing a selective advantage for P. gingivalis growth.

AB - BACKGROUND AND OBJECTIVES: Porphyromonas gingivalis is regarded as a significant contributor in the pathogenesis of periodontitis and certain systemic diseases, including atherosclerosis. P. gingivalis occasionally translocates from periodontal pockets into the circulation, where it adheres to red blood cells (RBCs). This may protect the bacterium from contact with circulating phagocytes without affecting its viability.MATERIAL AND METHODS: In this in vitro study, we investigated whether human peripheral blood neutrophils from 10 subjects with localized aggressive periodontitis (LAgP) and 10 healthy controls release the proinflammatory cytokines interleukin (IL)-6, tumor necrosis factor α (TNF-α), the chemokine (C-X-C motif) ligand 8 (CXCL8; also known as IL-8) and chemokine (C-C motif) ligand 2 (CCL2; also known as monocyte chemotactic protein-1) and intracellular reactive oxygen species (ROS) in response to challenge with P. gingivalis. In addition, the impact of RBC interaction with P. gingivalis was investigated. The actions of resolvin E1 (RvE1), a known regulator of P. gingivalis induced neutrophil responses, on the cytokine and ROS responses elicited by P. gingivalis in cultures of neutrophils were investigated.RESULTS: Upon stimulation with P. gingivalis, neutrophils from subjects with LAgP and healthy controls released similar quantities of IL-6, TNF-α, CXCL8, CCL2 and intracellular ROS. The presence of RBCs amplified the release of IL-6, TNF-α and CCL2 statistically significant in both groups, but reduced the generation of ROS in the group of healthy controls, and showed a similar tendency in the group of subjects with LAgP. RvE1 had no impact on the production of intracellular ROS, TNF-α, IL-6, CXCL8 and CCL2 by neutrophils from either group, but tended to reduce the generation of ROS in subjects with LAgP in the absence of RBCs.CONCLUSIONS: Our data support that binding to RBCs protects P. gingivalis from ROS and concomitantly enhances neutrophil release of proinflammatory cytokines providing a selective advantage for P. gingivalis growth.

U2 - 10.1111/jre.12388

DO - 10.1111/jre.12388

M3 - Journal article

C2 - 27146665

VL - 52

SP - 246

EP - 254

JO - Journal of Periodontal Research

JF - Journal of Periodontal Research

SN - 0022-3484

IS - 2

ER -

ID: 162111163